Adult auditory brain responses to nestling begging calls in seasonal songbirds: an fMRI study in non-parenting male and female starlings (Sturnus vulgaris)

Front Behav Neurosci. 2024 Sep 17:18:1418577. doi: 10.3389/fnbeh.2024.1418577. eCollection 2024.

Abstract

The present study aims to investigate whether begging calls elicit specific auditory responses in non-parenting birds, whether these responses are influenced by the hormonal status of the bird, and whether they reflect biparental care for offspring in the European starling (Sturnus vulgaris). An fMRI experiment was conducted to expose non-parenting male and female European starlings to recordings of conspecific nestling begging calls during both artificially induced breeding and non-breeding seasons. This response was compared with their reaction to conspecific individual warbling song motifs and artificial pure tones, serving as social species-specific and artificial control stimuli, respectively. Our findings reveal that begging calls evoke a response in non-parenting male and female starlings, with significantly higher responsiveness observed in the right Field L and the Caudomedial Nidopallium (NCM), regardless of season or sex. Moreover, a significant seasonal variation in auditory brain responses was elicited in both sexes exclusively by begging calls, not by the applied control stimuli, within a ventral midsagittal region of NCM. This heightened response to begging calls, even in non-parenting birds, in the right primary auditory system (Field L), and the photoperiod induced hormonal neuromodulation of auditory responses to offspring's begging calls in the secondary auditory system (NCM), bears resemblance to mammalian responses to hunger calls. This suggests a convergent evolution aimed at facilitating swift adult responses to such calls crucial for offspring survival.

Keywords: European starling; auditory perception; begging calls; caudomedial nidopallium; functional magnetic resonance imaging (fMRI); lateralization; neuroethology; songbird.

Grants and funding

The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This research was supported by a postdoctoral fellowship awarded to EJ (grant agreement no. 12R1917N) and a PhD fellowship awarded to JO (grant agreement no. 1115217 N), both from the Research Foundation Flanders (FWO). AVdL was awarded a research project grant (grant agreement no. G030213N) from the Research Foundation Flanders (FWO), a Tournesol PHC program between France and Belgium (no 20371TA), a Concerted Research Action grant (GOA funding) from the University of Antwerp and a Interuniversity Attraction Poles (IAP) grant (“PLASTOSCINE”: P7/17). LH and MH are supported by the University of Rennes and by the French CNRS, respectively. The computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the Research Foundation Flanders (FWO) and the Flemish Government. The MRI equipment used in this study was supported by the Hercules Foundation (Grant no. AUHA0012) awarded to AVdL.