Different FeS Concentrations for Encapsulating ZIF-67 Nanomaterials toward the Enhanced Oxidation Evolution Reaction

Inorg Chem. 2024 Oct 14;63(41):19130-19139. doi: 10.1021/acs.inorgchem.4c02517. Epub 2024 Oct 1.

Abstract

Due to the slow kinetic nature of the oxygen evolution reaction (OER), the development of electrocatalysts with high efficiency, stability, and economy for oxygen production using metal-organic framework (MOF) materials is still a challenging research topic. In this work, we chose the different concentrations of FeS adsorption to encapsulate metal cobalt-based ZIF-67 MOF for preparing a series of electrocatalysts (ZIF1FeSx, x = 0.2, 0.5, 0.75, and 1), which were mainly explored for the electrocatalytic OER. Among them, ZIF1FeS0.5 has excellent electrocatalytic activity for OER, which can be driven by low overpotentials of 276 and 349 mV at 10 and 50 mA cm-2 current densities, and more than 92% of the initial overpotential can be maintained after 100 h of continuous OER at 10 mA cm-2 current density. This is mainly due to the electronic interactions between the cobalt-based MOF and the FeS, which shift the electronic state of the active metal center to a higher valence state for increasing the number of active sites and enhancing the efficiency of electron transfer to facilitate the OER course. This work may contribute to the design of effective catalysts for the OER during the electrolysis of alkaline solutions.