Plasmonic nanomaterials, particularly noble metal nanoframes (NFs), are important for applications such as catalysis, biosensing, and energy harvesting due to their ability to enhance localized electric fields and atomic efficiency via localized surface plasmon resonance (LSPR). Yet the fundamental structure-function relationships and plasmonic dynamics of the NFS are difficult to study experimentally and thus far rely predominately on computational methodologies, limiting their utilization. This study leverages the capabilities of ultrafast electron microscopy (UEM), specifically photon-induced near-field electron microscopy (PINEM), to probe the light-matter interactions within plasmonic NF structures. The effects of shape, size, and plasmonic coupling of Pt@Au core-shell NFs on spatial and temporal characteristics of plasmon-enhanced localized electric fields are explored. Importantly, time-resolved PINEM analysis reveals that the plasmonic fields around hexagonal NF prisms exhibit a spatially dependent excitation and decay rate, indicating a nuanced interplay between the spatial geometry of the NF and the temporal evolution of the localized electric field. These results and observations uncover nanophotonic energy transfer dynamics in NFs and highlight their potential for applications in biosensing and photocatalysis.
Keywords: Plasmonics; nanoframes; photon-induced near-field electron microscopy; plasmonic coupling; ultrafast electron microscopy.