The high temperature requirement for the desorption of absorbed CO2 is one of the issues for the widespread use of direct air capture (DAC), which is a promising technology to reduce atmospheric CO2 concentration. This work realized a liquid diamine absorbent-solid carbamic acid (CA) phase-change DAC system with CO2 desorption at a low temperature by using a MeOH solvent. The CA of isophoronediamine [3-(aminomethyl)-3,5,5-trimethylcyclohexylamine, CA-IPDA] readily desorbed CO2 in MeOH at 50 °C, while IPDA showed the capacity to absorb low-concentration CO2 from air with an IPDA/CO2 ratio of 1:1. The CA-IPDA desorbed more than half of the absorbed CO2 at 60 °C without any gas flow, proving that this system can condense low-concentration CO2 in air to pure CO2 with low energy requirements. The low-temperature desorption of CO2 from CA-IPDA was owing to the high solubility of CA-IPDA in MeOH and the easy CO2 transfer between carbamic acid and MeOH to form methyl carbonate ions. This solubility control in the liquid-solid phase-change system opens up the low-energy DAC systems.
© 2024 The Authors. Published by American Chemical Society.