Background: Pulmonary hypertension is a rare, progressive disorder that can lead to right ventricular hypertrophy, right heart failure, and even sudden death. N6-methyladenosine modification and the main methyltransferase that mediates it, methyltransferase-like (METTL) 3, exert important effects on many biological and pathophysiological processes. However, the role of METTL3 in pyroptosis remains unclear.
Methods and results: Here, we characterized the role of METTL3 and the underlying cellular and molecular mechanisms of pyroptosis, which is involved in pulmonary hypertension. METTL3 was downregulated in a pulmonary hypertension mouse model and in hypoxia-exposed pulmonary artery smooth muscle cell. The small interfering RNA-induced silencing of METTL3 decreased the m6A methylation levels and promoted pulmonary artery smooth muscle cell pyroptosis, mimicking the effects of hypoxia. In contrast, overexpression of METTL3 suppressed hypoxia-induced pulmonary artery smooth muscle cell pyroptosis. Mechanistically, we identified the phosphate and tension homology deleted on chromosome 10 (PTEN) gene as a target of METTL3-mediated m6A modification, and methylated phosphate and tension homology deleted on chromosome 10 mRNA was subsequently recognized by the m6A "reader" protein insulin-like growth factor 2 mRNA-binding protein 2, which directly bound to the m6A site on phosphate and tension homology deleted on chromosome 10 mRNA and enhanced its stability.
Conclusions: These results identify a new signaling pathway, the METTL3/phosphate and tension homology deleted on chromosome 10/insulin-like growth factor 2 mRNA-binding protein 2 axis, that participates in the regulation of hypoxia-induced pyroptosis.
Keywords: IGF2BP2; METTL3; PTEN; pulmonary artery hypertension; pyroptosis.