Wetland ecosystems are vital carbon dioxide (CO2) sinks, offering significant nature-based solutions for global climate mitigation. However, the recent influx of microplastic (MP) into wetlands substantially impacts key drivers (e.g., plants and microorganisms) underpinning these wetland functions. While MP-induced greenhouse gas (GHG) emissions and effects on soil organic carbon (SOC) mineralization potentially threaten the long-term wetland C-climate feedbacks, the exact mechanisms and linkage are unclear. This review provides a conceptual framework to elaborate on the interplay between MPs, wetland ecosystems, and the atmospheric milieu. We also summarize published studies that validate possible MP impacts on natural climate solutions of wetlands, as well as provide extensive elaboration on underlying mechanisms. We briefly highlight the relationships between MP influx, wetland degradation, and climate change and conclude by identifying key gaps for future research priorities. Globally, plastic production, MP entry into aquatic systems, and wetland degradation-related emissions are predicted to increase. This means that MP-related emissions and wetland-climate feedback should be addressed in the context of the UN Paris Climate Agreement on net-zero emissions by 2050. This overview serves as a wake-up call on the alarming impacts of MPs on wetland ecosystems and urges a global reconsideration of nature-based solutions in the context of climate mitigation.
Keywords: Aquatic ecosystems; Carbon sequestration; Nature-based solutions; Plastisphere microorganisms; Wetland ecosystems; Wetland microplastics.
Copyright © 2024 Elsevier B.V. All rights reserved.