On-chip metasurface for guided wave radiation works as an upgrade of conventional grating couplers, enriching the interconnection between guided wave and free-space optical field. However, the number of controllable parameters in equivalent Jones matrix of on-chip metasurface is limited that restricts the channels for multiplexing. Here, a supercell design based on detour phase and geometric phase has been proposed to reach full-parametric modulation of Jones matrix. As proof of concept, four independent sets of amplitude-phase channels have been experimentally demonstrated through a single on-chip metasurface. Moreover, through joint modulation of three phase mechanisms including detour phase, geometric phase and propagation phase, the Jones matrix could be decoupled from forward- and backward-propagating guided waves for direction multiplexing. This work paves the way for guided wave radiation towards high-capacity multiplexing and may further extend its application in optical communications, optical displays and augmented/virtual reality.
© 2024. The Author(s).