Pre-concentration can reduce the total production costs in the pharmaceutical industry. Organic solvent forward osmosis (OSFO) is a suitable pre-concentration method because of its nonthermal nature, low capital cost, and potential for achieving high-degree concentrations. In a previous study, we first demonstrated a high-degree OSFO concentration. Sucrose octaacetate (SoA) in MeOH was concentrated to 52 wt% using polyethylene glycol (PEG)-400 as the osmotic agent, but the concentrated solution had a concentration of 17% PEG-400 because of the reverse solute flux. This result does not meet the typical purity standards required for pharmaceutical production, indicating the need to determine a suitable osmotic agent that can be used for practical purposes. This study proposes a practical osmotic agent for OSFO pre-concentration. First, osmotic agents were screened from a practical perspective. Polypropylene glycol (PPG)-400 was selected, owing to its low toxicity, good solubility, and low viscosity. Subsequently, the OSFO concentration was demonstrated using PPG-400 as the osmotic agent. SoA in MeOH was concentrated from 9.4 wt% to 48 wt%. The final feed solution contained only 0.04 wt% PPG-400. This result is the first demonstration of successful pharmaceutical pre-concentration using OSFO that satisfies the typical purity requirement in pharmaceutical production.
Keywords: active pharmaceutical ingredients; high-degree concentration; organic solvent forward osmosis; osmotic agent; polyketone-based thin-film composite hollow fiber membrane.