Dynamic Luminescence Vapochromism of Pyridinium-Based Organic Salts

Chemistry. 2024 Dec 10;30(69):e202402777. doi: 10.1002/chem.202402777. Epub 2024 Oct 31.

Abstract

Organic vapochromic materials which undergo a drastic change in their photophysical properties upon exposure to vapors or gases are attracting growing scientific attention because of their low price and wide range of possible applications. In this work, luminescence vapochromism of carbazole-pyridinium-based organic salts with a general structure of (CzPy)X (CzPy+=2,3-di(9H-carbazol-9-yl)pyridinium ion; X=Cl, Br or I) is reported. It was found that (CzPy)X compounds form J-aggregates, which rearranged back to monomeric form upon exposure to methanol, ethanol, acetone, and water vapors. In contrast, acetonitrile was found to promote the J-aggregation in (CzPy)X compounds by occupying the voids in their crystal lattice and pushing cations closer together. It was further demonstrated that the efficiency of J-aggregation in (CzPy)X compounds depends on the size of the anion, which was employed to realize dynamic luminescence vapochromism, with vapochromic response times ranging from a couple of minutes in (CzPy)Cl to more than an hour in (CzPy)I. In addition, (CzPy)X compounds exhibited high melting points of about 250 °C and excellent thermal stability. (CzPy)Cl and (CzPy)Br have also shown good photoluminescence quantum yields at room temperature in a solid state.

Keywords: Crystal engineering; Dimer luminescence; J-aggregation; Organic crystals; Vapochromism.