Telomeres, crucial for chromosomal integrity, have been related to aging and cancer formation, mainly through regulating G-quadruplex structures. G-quadruplexes are structural motifs that can arise as secondary structures of nucleic acids, especially in guanine-rich DNA and RNA regions. Targeting these structures by small compounds shows promise in the selective suppression of cell growth, opening up novel possibilities for anticancer treatment. A comprehensive investigation of the many structural forms of G-quadruplex ligands is required to create ground-breaking anticancer drugs. Recent research into using specific benzimidazole molecules in stabilizing telomeric DNA into G-quadruplex structures has highlighted their ability to influence oncogene expression and demonstrate antiproliferative characteristics against cancer cells. This review describes the benzimidazole derivative, designed to enhance the stability of the G-quadruplex structure DNA to suppress the activity of telomerase enzyme, exhibiting promising potential for anticancer therapy.
Keywords: Anticancer agent; DNA G-quadruplex; Ligand/small molecule interaction; Telomerase.
[Box: see text].