Microelectromechanical system-based microphones demand high ingress protection levels with regard to their use in harsh environment. Here, we develop environmental protective components comprising polyimide nanofibers combined onto polyether ether ketone fabric meshes and subsequently appraise their impact on the electroacoustic properties of high signal-to-noise-ratio microelectromechanical system-based microphones via industry-standard characterizations and theoretical simulations. Being placed directly on top of the microphone sound port, the nanofiber mesh die-cut parts with an inner diameter of 1.4 mm result in signal-to-noise-ratio and insertion losses of (2.05 ± 0.16) dB(A) and (0.30 ± 0.11) dBFS, respectively, in electroacoustic measurements. Hence, a high signal-to-noise-ratio value of (70.05 ± 0.17) dB(A) can be maintained by the mesh-protected microphone system. Due to their high temperature stability, acoustic performance, environmental robustness, and industry-scale batch production, these nanofibrous meshes reveal high potential to be practically implemented in high-market-volume applications of packaged microelectromechanical system-based microphones.
© 2024. The Author(s).