The Protective Effects of the Ethyl Acetate Part of Er MiaoSan on Adjuvant Arthritis Rats by Regulating the Function of Bone Marrow-Derived Dendritic Cells

Evid Based Complement Alternat Med. 2020 Nov 12:2020:8791657. doi: 10.1155/2020/8791657. eCollection 2020.

Abstract

Aims: The aim of this study was to evaluate the protective effects of Er Miao San (EMS) and the regulative function of bone marrow-derived dendritic cells (BMDCs) on adjuvant arthritis (AA) in rats.

Methods: The ethyl acetate part of EMS (3 g/kg, 1.5 g/kg, and 0.75 g/kg) was orally administered from day 15 after immunization to day 29. The polyarthritis index and paw swelling were measured, the ankle joint pathological changes were observed using hematoxylin-eosin (HE) staining, and the spleen and thymus index were determined. Moreover, T and B cell proliferation were determined using the CCK-8 assay. The expression of BMDC surface costimulatory molecules and inflammatory factors were determined using flow cytometry and ELISA kits, respectively.

Results: Compared with the AA model rats, the ethyl acetate fraction of EMS obviously reduced paw swelling (from 1.0 to 0.7) and the polyarthritis index (from 12 to 9) (P < 0.01) and improved the severity of histopathology (P < 0.01). The treatment using ethyl acetate fraction of EMS significantly reduced the spleen and thymus index (P < 0.01) and inhibited T and B cell proliferation (P < 0.01). Moreover, EMS significantly modulated the expression of surface costimulatory molecules in BMDCs, including CD40, CD80, CD86, and major histocompatibility complex class II (MHC-II) (P < 0.01). The results also showed that the ethyl acetate part of EMS significant inhibited the levels of proinflammatory cytokines interleukin- (IL-) 23 tumor necrosis factor- (TNF-) α and inflammatory factor prostaglandin (PG) E2 in the supernatant of BMDCs. However, the level of anti-inflammatory cytokine IL-10 was significantly increased (P < 0.01).

Conclusion: These results suggest that the ethyl acetate part of EMS has better protective effects on AA rats, probably by regulating the function of BMDCs and modulating the balance of cytokines.