Background: Accurate detection of Hepatocellular carcinoma (HCC) feeding vessels during transcatheter arterial chemoembolization (TACE) is important for an effective treatment, while limiting non-target embolization. This study aimed to investigate the feasibility and accuracy of pre-TACE three dimensional (3D) CT angiography for tumor-feeding vessels detection compared to DSA.
Methods: Sixty-nine consecutive patients referred for TACE from May 2022 to May 2023 were included. (3D) CT images were reconstructed from the pre-TACE diagnostic multiphasic contrast enhanced CT images and compared with non-selective digital subtraction angiography (DSA) images obtained during TACE for detection of HCC feeding vessels. A "Ground truth" made by consensus between observers after reviewing all available pre-TACE CT images, and DSA and CBCT images during TACE to detect the true feeding vessels was the gold standard. Sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV), accuracy and ROC curve with AUC were calculated for each modality and compared.
Results: A total of 136 active HCCs were detected in the 69 consecutive patients included in the study. 185 feeding arteries were detected by 3D CT and DSA and included in the analysis. 3D CT detection of feeding arteries revealed mean sensitivity, specificity, PPV, NPV and accuracy of 91%, 71%, 98%, 36%, and 90%, respectively, with mean AUC = 0.81. DSA detection of feeding arteries revealed mean sensitivity, specificity, PPV, NPV, and accuracy of 80%, 58%, 96.5%, 16.5% and 78%, respectively, with mean AUC = 0.69.
Conclusions: Pre-TACE 3D CT angiography has shown promise in improving the detection of HCC feeding vessels compared to DSA. However, further studies are required to confirm these findings across different clinical settings and patient populations.
Trial registration: This study was prospectively registered at Clinicaltrials.gov with ID NCT05304572; Date of registration: 2-4-2022.
Keywords: 3D; 3DCT; DSA.; Feeding arteries; HCC; TACE; VR.
© 2024. The Author(s).