Guest Cation Functionalized Metal Organic Framework for Highly Efficient C2H2/CO2 Separation

Small. 2024 Dec;20(49):e2405561. doi: 10.1002/smll.202405561. Epub 2024 Sep 17.

Abstract

The removal of carbon dioxide (CO2) from acetylene (C2H2) production is critical yet difficult due to their similar physicochemical properties. Despite extensive research has been conducted on metal-organic frameworks (MOFs) for C2H2/CO2 separation, approaches to designing functionalized MOFs remain limited. Enhancing gas adsorption through simple pore modification holds great promise in molecular recognition and industrial separation processes. This study proposes a guest cation functionalization strategy using the anionic framework SU-102 as the prototype material. Specifically, the guest cation Li+ is introduced into the skeleton by ion exchange to obtain SU-102-Li+. This strategy generates strong interactions between Li+ and gas molecules, thereby elevating C2H2 uptake to 49.18 cm3 g-1 and CO2 uptake to 29.88 cm3 g-1, marking 20.3% and 36.9% improvements over the parent material, respectively. In addition, ideal adsorbed solution theory selectivity calculations and dynamic breakthrough experiments confirmed the superior and stable separation performance of SU-102-Li+ for C2H2/CO2 (25 min g-1) and C2H2 productivity (1.55 mmol g-1). Theoretical calculations further reveals the unique molecular recognition mechanism between gas molecules and guest cations.

Keywords: acetylene/carbon dioxide separation; gas separation; guest cations; guest‐functionalized MOFs; mental organic frameworks (MOFs).