Background: There is a lack of procedures that adequately address the subchondral bone structure and function for reconstructing osteochondral defects in the femoral condyles.
Purpose: To biomechanically evaluate the tibiofemoral joint contact characteristics before and after reconstruction of femoral condylar osteochondral defects using a novel hybrid reconstructive procedure, which was hypothesized to restore the contact characteristics to the intact condition.
Study design: Controlled laboratory study.
Methods: Tibiofemoral contact areas, contact forces, and mean contact pressures were measured in 8 cadaveric knees (mean age 52 ± 11 years; 6 women, 2 men) using a custom testing system and pressure mapping sensors. Five conditions were tested for each condyle: intact, 8-mm defect, 8-mm repair, 10-mm defect, and 10-mm repair. Medial femoral condylar defects were evaluated at 30° of knee flexion and lateral condylar defects were evaluated at 60° of knee flexion, with compressive loads of 50, 100, and 150 N. The defects were reconstructed with a titanium fenestrated threaded implant countersunk in the subchondral bone and an acellular dermal matrix allograft. Repeated-measures analysis of variance with Bonferroni correction for multiple comparisons was used to compare the results between the 5 testing conditions at each load.
Results: Medial condylar defects significantly increased mean contact pressure on the lateral side (P < .042), which was restored to the intact levels with repair. The lateral condylar defect decreased the mean contact pressure laterally while increasing the mean pressure medially. The lateral and medial mean contact pressures were restored to intact levels with the 8-mm lateral condylar defect repair. The medial mean contact pressure was restored to intact levels with the 10-mm lateral condylar defect repair. The lateral mean contact pressure decreased compared with the intact state with the lateral condylar 10-mm defect repair.
Conclusion: Tibiofemoral joint contact pressure was restored to the intact condition after reconstruction of osteochondral defects with dermal allograft matrix and subchondral implants for the repair of both 8- and 10-mm lateral condylar defects as well as 8-mm medial condylar defects but not completely for 10-mm medial condylar defects.
Clinical relevance: The novel hybrid procedure for osteochondral defect repair restored tibiofemoral joint contact characteristics to normal in a cadaveric model.
Keywords: contact pressure; osteochondral defect; osteochondritis dissecans; osteochondrosis; subchondral bone; tibiofemoral.
© The Author(s) 2024.