Rheotaxis is a fundamental mechanism of sperm cells that guides them in navigating towards the oocyte. The present study investigates the phenomenon of sperm rheotaxis in Newtonian and non-Newtonian fluid media, which for the first time explores a viscosity range equivalent to that of the oviductal fluid of the female reproductive tract in rectilinear microfluidic channels. Three parameters, the progressive velocity while performing rheotaxis, the radius of rotation during rheotaxis, and the percentage of rheotactic sperm cells in the bulk and near-wall regions of the microfluidic channel were measured. Numerical simulations of the flow were conducted to estimate the shear rate, flow velocity, and the drag force acting on the sperm head at specific locations where the sperms undergo rheotaxis. Increasing the flow velocity resulted in a change in the position of rheotactic sperm from the bulk center to the near wall region, an increase and subsequent decrease in the sperm's upstream progressive velocity, and a decrease in the radius of rotation. We observed that with an increase in viscosity, rheotactic sperms migrate to the near wall regions at lower flow rates, the upstream progressive velocity of the sperm decreases for Newtonian and increases for non-Newtonian media, and the radius of rotation increases for Newtonian and decreases for non-Newtonian media. These results quantify the effects of fluid properties such as viscosity and flow rate on sperm rheotaxis and navigation, thereby paving the way for manipulating sperm behavior in microfluidic devices, potentially leading to advancements in assisted reproduction techniques.
Keywords: microchannel; newtonian; non-newtonian; rheotaxis; sperm cell.
© 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.