Intercellular nanotube-mediated mitochondrial transfer enhances T cell metabolic fitness and antitumor efficacy

Cell. 2024 Nov 14;187(23):6614-6630.e21. doi: 10.1016/j.cell.2024.08.029. Epub 2024 Sep 13.

Abstract

Mitochondrial loss and dysfunction drive T cell exhaustion, representing major barriers to successful T cell-based immunotherapies. Here, we describe an innovative platform to supply exogenous mitochondria to T cells, overcoming these limitations. We found that bone marrow stromal cells establish nanotubular connections with T cells and leverage these intercellular highways to transplant stromal cell mitochondria into CD8+ T cells. Optimal mitochondrial transfer required Talin 2 on both donor and recipient cells. CD8+ T cells with donated mitochondria displayed enhanced mitochondrial respiration and spare respiratory capacity. When transferred into tumor-bearing hosts, these supercharged T cells expanded more robustly, infiltrated the tumor more efficiently, and exhibited fewer signs of exhaustion compared with T cells that did not take up mitochondria. As a result, mitochondria-boosted CD8+ T cells mediated superior antitumor responses, prolonging animal survival. These findings establish intercellular mitochondrial transfer as a prototype of organelle medicine, opening avenues to next-generation cell therapies.

Keywords: CAR T therapy; CD8(+) T cells; TCR-T therapy; TIL therapy; Talin 2; bone marrow stromal cells; cancer immunotherapy; immune metabolism; mitochondrial transfer; nanotubes.

MeSH terms

  • Animals
  • CD8-Positive T-Lymphocytes* / immunology
  • CD8-Positive T-Lymphocytes* / metabolism
  • Cell Line, Tumor
  • Female
  • Humans
  • Mesenchymal Stem Cells / cytology
  • Mesenchymal Stem Cells / metabolism
  • Mice
  • Mice, Inbred C57BL*
  • Mitochondria* / metabolism
  • Nanotubes* / chemistry
  • Neoplasms / immunology
  • Neoplasms / metabolism
  • Neoplasms / pathology
  • Neoplasms / therapy