This study investigates the performance of different poly(lactic acid) (PLA) composites incorporating agri-food waste additives and commercial lignin, comparing their properties with those of virgin PLA. The following composites were prepared using a single-screw extruder: PLA with 20% rice husk, PLA with 20% wheat straw and PLA with 20% olive pit. Additionally, PLA was blended with commercial lignin at the maximum feasible proportion using the same methodology. The resulting composites were injection-molded into specimens for analysis of their mechanical, thermal and morphological behavior. The primary objectives were to assess the dispersion of the additives within the PLA matrix and to evaluate the mechanical properties of the composites. The results indicate that the addition of high percentages of agricultural residues does not significantly compromise the mechanical properties of the composites. Notably, in the case of the PLA with 20% rice husk composite, the elastic modulus surpassed that of virgin PLA, despite the evident heterogeneity in filler particle sizes. It was feasible to incorporate a higher percentage of agricultural residues compared to commercial lignin, attributed to the larger volume occupied by the latter.
Keywords: PLA; composite; lignin; waste recovery.