MicroRNA-27a-5p (miR-27a-5p) was significantly upregulated in dental pulp inflammation, yet its underlying mechanisms remain unclear. This study investigated the effect of miR-27a-5p on the expression of proinflammatory cytokines in human dental pulp cells (hDPCs) stimulated by lipopolysaccharide (LPS). LPS-stimulated hDPCs showed concurrent increases in the expression of miR-27a-5p and proinflammatory cytokines (IL-6, IL-8, and MCP1), and the increased expression was suppressed by NF-κB inhibitor BAY 11-0785. Transfection of the miR-27a-5p mimic downregulated the expression of proinflammatory cytokines, NF-κB activity, and the expression of NF-κB signaling activators (TAB1, IRAK4, RELA, and FSTL1) in LPS-stimulated hDPCs. Luciferase reporter assays revealed that miR-27a-5p bound directly to the 3'-UTR of TAB1. siTAB1 downregulated NF-κB activity and proinflammatory cytokine expression. Downregulation of proinflammatory cytokine expression, NF-κB activity, and NF-κB signaling activator expression (TAB1, IRAK4, and RELA) was also found in LPS-stimulated rat incisor pulp tissue explants following transfection with the miR-27a-5p mimic ex vivo. MiR-27a-5p, whose expression was induced by NF-κB signaling, negatively regulated the synthesis of proinflammatory cytokines via targeting NF-κB signaling. In particular, TAB1, a potent NF-κB activator, was targeted by miR-27a-5p. These results provide insights into the negative regulatory effects of miR-27a-5p, particularly those targeting the TAB1-NF-κB signaling pathway, on pulp inflammation.
Keywords: NF-κB signaling pathway; human dental pulp cell; microRNA-27a-5p; proinflammatory cytokine; pulpal inflammation.