Craft Beer Produced by Immobilized Yeast Cells with the Addition of Grape Pomace Seed Powder: Physico-Chemical Characterization and Antioxidant Properties

Foods. 2024 Sep 3;13(17):2801. doi: 10.3390/foods13172801.

Abstract

The aim of this study was to produce and to characterize craft beer fermented by immobilized yeast cells with the addition of Prokupac grape pomace seed powder (2.5% and 5%), to obtain a beer enriched with phenolic compounds and improved sensory characteristics. The immobilization of the yeast cells was performed by electrostatic extrusion, while the obtained calcium alginate beads were characterized by light and scanning electron microscopy. Phenolic and hop-derived bitter compounds in beer with or without grape pomace seed powder (GS) phenolics were identified using UHPLC Q-ToF MS. The results indicated that GS adjunct significantly shortened the fermentation process of wort and increased the content of phenolic compounds, especially ellagic acid, flavan-3-ols and pro(antho)cyanidins in the final products compared to the control beer. A total of twenty (iso)-α-acids and one prenylflavonoid were identified, although their levels were significantly lower in beers with GS phenolics compared to the control beer. Beers with GS phenolics showed good antioxidant properties as measured by the reduction of ferric ions (FRP) and the scavenging of ABTS•+ and DPPH radicals. The concentration of immobilized viable yeast cells was higher than 1 × 108 CFU/g wet mass after each fermentation without destroying the beads, indicating that they can be reused for the repeated fermentation of wort. Beers produced with 5% GS added to the wort exhibited the best sensory properties (acidity, astringency, bitterness intensity, mouthfeel, aftertaste and taste), and highest overall acceptability by the panelists. The results showed that grape pomace seed powder present a promising adjunct for the production of innovative craft beer with good sensory properties and improved functionality.

Keywords: Ca-alginate beads; UHPLC Q-ToF MS; craft beer; grape pomace seeds; hop-derived α-acids; immobilized yeast cells; phenolic compounds.