Psidium guajava Seed Oil Reduces the Severity of Colitis Induced by Dextran Sulfate Sodium by Modulating the Intestinal Microbiota and Restoring the Intestinal Barrier

Foods. 2024 Aug 24;13(17):2668. doi: 10.3390/foods13172668.

Abstract

The oil derived from Psidium guajava seeds (TKSO) exhibits an abundance of diverse unsaturated fatty acids, notably oleic, linoleic, and α-linolenic acids, conferring substantial health advantages in addressing metabolic irregularities and human diseases. This research endeavor focused on elucidating the impacts of TKSO on colonic inflammatory responses and intestinal microbiota alterations in a murine model of colitis induced by dextran sulfate sodium (DSS), demonstrated that substantial supplementation with TKSO reduces the severity of colitis induced by DSS. Furthermore, TKSO effectively attenuated the abundance and expression of proinflammatory mediators while augmenting the expression of tight junction proteins in DSS-challenged mice. Beyond this, TKSO intervention modulated the intestinal microbial composition in DSS-induced colitis mice, specifically by enhancing the relative presence of Lactobacillus, Norank_f_Muribaculaceae, and Lachnospiraceae_NK4A136_group, while concurrently diminishing the abundance of Turicibacter. Additionally, an analysis of short-chain fatty acids (SCFAs) revealed noteworthy elevations in acetic, propionic, isobutyric, and butyric acids, and total SCFAs levels in TKSO-treated mice. In summary, these findings underscore the potential of TKSO to reduce the severity of colitis induced by DSS in mice through intricate modulation of the intestinal microbiota, metabolite profiles, and intestinal barrier repair, thereby presenting a promising avenue for the development of therapeutic strategies against intestinal inflammatory conditions.

Keywords: Psidium guajava seed oil; colitis; intestinal microbiota; linolenic acid.

Grants and funding

This work was supported by the Foundation of Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province (202208CL), grants from the Development of deep-processed products of Torreya and Evaluation of Functional Active Substances (2021R06B88D02), and the Project of Science and Technology Program of Quzhou (no. 2021K34) and Zhejiang Provincial Natural Science Foundation Project (LZ24C200005).