Feeding a Saccharomyces cerevisiae Fermentation Product to Mares in Late Gestation Alters the Biological Activity of Colostrum

Animals (Basel). 2024 Aug 24;14(17):2459. doi: 10.3390/ani14172459.

Abstract

The quality of equine colostrum is typically defined by refractometry or the concentration of maternal antibodies. However, the activity of other equine colostral bioactive molecules has not yet been investigated. This study analyzed whether the administration of a Saccharomyces cerevisiae fermentation product (SCFP) influences the biological activity of mare colostrum and whether the biological activity of colostrum has a lasting immunomodulating effect for foals. A total of fourteen pregnant mares received 20 g/day of a SCFP for a period of twelve weeks prior to the calculated date of birth (SCFP-group). Twelve pregnant mares without supplementation served as controls (CON). Colostral Brix values were determined within three hours after parturition. The concentration of IgG in blood sera and colostrum samples was determined with an ELISA. The biological activity was determined in a cell growth assay with a porcine epithelial cell line (IPEC-J2). Mares (at three weeks before the calculated date of birth) and foals (at the age of 5-8 months) received a parenteral active vaccination against influenza and tetanus. The administration of SCFP did not alter the mare's serum and colostrum IgG concentrations and did not exert a significant influence on the mares' early response to the vaccination. Growth and diarrhea episodes were comparable between foals of supplemented mares (SCFP) and foals of mares without supplementation (CON). Colostrum samples from SCFP-supplemented mares exhibited heightened biological activity. While SFCP and CON foals did not differ in their early response to vaccination, the vaccination-induced alterations in circulating neutrophilic granulocyte numbers were significantly correlated with the biological colostrum activity. These findings suggest that the supplementation of mares in late gestation with SCFP can enhance the biological activity of colostrum, which subsequently influences the innate immune responses of their offspring in later life.

Keywords: SCFP; Saccharomyces cerevisiae; biological activity; colostrum; foals; horses.

Grants and funding

This research was funded by BB horses GmbH & Co. KG. We acknowledge financial support by the Open Access Publication Fund of the University of Veterinary Medicine Hannover, Foundation.