Sodium-dependent glucose cotransporter-2 (SGLT2) inhibitors, antidiabetic drugs that reduce blood sugar levels by inhibiting glucose reabsorption in the renal proximal tubules, also ameliorate nonalcoholic fatty liver disease (NAFLD). This study aimed to examine the effects of SGLT2 inhibition on hepatic steatosis and nonalcoholic steatohepatitis (NASH) using an in vitro model of NAFLD progression. HepG2 cells and a coculture of Hepa1c1c7 and Raw 264.7 cells were treated with 400 μM palmitic acid (PA), followed by treatment with or without 10 μM empagliflozin and dapagliflozin. In HepG2 cells, PA increased hepatic lipid accumulation, the expression of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β), exocytosis mediators (VAMP3 and SNAP23), and ER stress markers (GRP78, PERK, IRE1α, ATF6, ATF4, and CHOP), and the gene and protein expression of CD36. SGLT2 inhibitors reversed the effects of PA. SGLT2 inhibition via siRNA reduced proinflammatory-cytokine gene expression in thapsigargin-treated HepG2 cells. Transfection with CD36 siRNA reversed the elevated ATF4 and CHOP expression in PA-treated HepG2 cells. SGLT2 inhibition via an SGTL2 inhibitor and SGLT2 siRNA reduced CD36, Tnf-α, Il-6, Il-1β, Vamp2, Snap23, Atf4, and Chop expression in the PA-treated Hepa1c1c7-Raw 264.7 cell coculture and suppressed Tnf-α release in the Hepa1c1c7-Raw 264.7 cell coculture treated with lipopolysaccharide and PA. These findings indicate that SGLT2 inhibitors inhibited NAFLD progression by reducing hepatic lipid accumulation and inflammation.
Keywords: CD36; Endoplasmic reticulum stress; Inflammation; Nonalcoholic fatty liver disease; Nonalcoholic steatohepatitis; Sodium-dependent glucose cotransporter-2.
Copyright © 2024. Published by Elsevier Inc.