Freeze-Cast MIL-53(Al) Porous Materials with High Thermal Insulation and Flame Retardant Properties

Inorg Chem. 2024 Sep 23;63(38):17828-17835. doi: 10.1021/acs.inorgchem.4c02822. Epub 2024 Sep 11.

Abstract

The development of materials with superior thermal insulation and flame retardancy is critical for industrial applications and daily life. Metal-organic framework (MOF)@poly(vinyl alcohol) (PVA) (MOF@PVA) aerogel composites have demonstrated remarkable thermal insulation and flame retardancy properties. In this work, MIL-53(Al) was directly mixed with PVA and formed by freeze-drying, and the influence of the pore structure on the thermal insulation and flame retardancy properties of the materials was investigated. The incorporated MIL-53(Al) nanoparticles introduced abundant micro- and mesopores, enhancing the complexity of the pore structure and improving the thermal insulation and flame retardancy properties of the aerogels. The directionally freeze-cast aerogel achieved a thermal conductivity of 0.040 W·mK-1, and maintained excellent thermal insulation ability even at 220 °C. Furthermore, the aerogel exhibited nonflammable and self-extinguishing characteristics. This environmentally friendly manufacturing method provides new ideas for the design of MOF-based composites, thereby expanding their application areas.