Immunofluorescent foci of DNA Damage Response (DDR) proteins serve as surrogates for DNA damage and are frequently interpreted as denoting specific lesions. For example, Double Strand Breaks (DSBs) are potent inducers of the DDR, whose best-known factor is the phosphorylated histone variant H2AX (γ-H2AX). The association with DSBs is so well established that the reverse interpretation that γ-H2AX invariably implies DSBs is routine. However, this conclusion is inferential and has been challenged. The resolution of this question has been hampered by the lack of methods for distinguishing the location of DDR proteins relative to DSBs caused by sequence indifferent agents. Here, we describe an approach for marking the location of DDR factors in relation to DSBs on DNA fibers. We synthesized a two-arm "Y" conjugate containing biotin and trimethylpsoralen (TMP) coupled to a secondary antibody. After exposure to a DNA breaker, permeabilized mammalian cells were incubated with a primary antibody against the DDR factor followed by binding of the secondary antibody in the conjugate to the primary antibody. Exposure to longwave UV light covalently linked the psoralen to the DNA. DNA fibers were spread, and the immunofluorescence of the biotin tag denoted the location of the target protein.