Does Sagittal Alignment Matter? A Biomechanical Look at Pinning Pediatric Supracondylar Humerus Fractures

J Pediatr Orthop. 2025 Jan 1;45(1):16-21. doi: 10.1097/BPO.0000000000002809. Epub 2024 Sep 10.

Abstract

Objective: Closed manipulation and percutaneous pinning is standard of care for displaced supracondylar humerus fractures, yet the optimal pin configuration, particularly in the sagittal plane, is not well defined. This study evaluates how sagittal plane pin variations affect construct strength biomechanically.

Methods: One hundred synthetic pediatric humerus models were used to emulate supracondylar humerus fracture. The models were pinned using 4 different configurations uniformly divergent in the coronal plane with variations in the sagittal plane: (1) 2 diverging pins with the lateral pin anterior (n = 25), (2) 2 diverging pins with the lateral pin posterior (n = 25), (3) 2 parallel pins (n = 25), and (4) 3 parallel pins (n = 25). The models were tested under bending (flexion, extension, and varus) and rotational (internal and external) forces, measuring stiffness and torque. Statistical analyses identified significant differences across configurations.

Results: The 2-pin parallel configuration (9.68 N/mm in extension, 8.76 N/mm in flexion, 0.14 N-m/deg in internal rotation, and 0.14 N-m/deg in external rotation) performed similarly to the 3-pin parallel setup (10.77 N/mm in extension, 7.78 N/mm in flexion, 0.16 N-m/deg in internal rotation, and 0.14 N-m/deg in external rotation), with no significant differences in stiffness. In contrast, both parallel configurations significantly outperformed the 2-pin anterior (5.22 N/mm in extension, 5.7 N/mm in flexion, 0.11 N-m/deg in internal rotation and 0.10 N-m/deg in external rotation) and posterior (9.86 N/mm in extension, 8.31 N/mm in flexion, 0.12N-m/deg in internal rotation, and 0.11 N-m/deg in external rotation) configurations in resisting deformation. No notable disparities were observed in varus loading among any configurations.

Conclusions: This study illuminates the sagittal plane's role in construct stability. It suggests that, when utilizing 2-pins, parallel configurations in the sagittal plane improve biomechanical stability. In addition, it suggests avoiding the lateral anterior pin configuration due to its biomechanical inferiority. Further research should assess ultimate strength and compare various 3-pin configurations to better delineate differences between 2-pin and 3-pin configurations regarding sagittal plane alignment.

Level of evidence: Level III-biomechanical study.

MeSH terms

  • Biomechanical Phenomena
  • Bone Nails*
  • Child
  • Humans
  • Humeral Fractures* / surgery
  • Models, Anatomic
  • Range of Motion, Articular