Synergy between virus and three kingdom pathogens, fungus, bacterium and virus is lost in rice mutant lines of OsRDR1/6

Plant Sci. 2024 Dec:349:112244. doi: 10.1016/j.plantsci.2024.112244. Epub 2024 Sep 6.

Abstract

Co-infection, caused by multiple pathogen attacks on an organism, can lead to disease development or immunity. This complex interaction can be synergetic, co-existing, or antagonistic, ultimately influencing disease severity. The interaction between fungus, bacterium, and virus (three kingdom pathogens) is most prevalent. However, the underlying mechanisms of co-infection need to be explored further. In this study, we investigated the co-infection phenomenon in rice plants exposed to multiple pathogen species, specifically Rice necrosis mosaic virus (RNMV) and rice blast fungus (Magnaporthe oryzae, MO), bacterial leaf blight (Xanthomonas oryzae pv. oryzae, XO) or Cucumber mosaic virus (CMV). Our research showed that RNMV interacts synergistically with MO, XO, or CMV, increasing pathogen growth and lesion size. These findings suggest positive synergy in RNMV co-infections with three kingdom pathogens, increasing accumulation and symptoms. Additionally, to investigate the role of RNAi in pathogen synergism, we analyzed rice mutant lines deficient in RNA-dependent RNA polymerase 1 (OsRDR1) or 6 (OsRDR6). Notably, we observed the loss of synergy in each mutant line, highlighting the crucial role of OsRDR1 and OsRDR6 in maintaining the positive interaction between RNMV and three kingdom pathogens. Hence, our study emphasized the role of the RNA silencing pathway in the intricate landscape of pathogen interactions; the study's outcome could be applied to understand the plant defense response to improve crop yields.

Keywords: Cucumber mosaic virus; Magnaporthe oryzae; RNA dependent RNA polymerase 1/6; Rice necrosis mosaic virus; Synergy; Xanthomonas oryzae pv. oryzae.

MeSH terms

  • Ascomycota
  • Coinfection / microbiology
  • Coinfection / virology
  • Cucumovirus / physiology
  • Host-Pathogen Interactions
  • Magnaporthe / physiology
  • Mutation
  • Oryza* / genetics
  • Oryza* / microbiology
  • Oryza* / virology
  • Plant Diseases* / microbiology
  • Plant Diseases* / virology
  • Plant Proteins / genetics
  • Plant Proteins / metabolism
  • Xanthomonas* / physiology

Substances

  • Plant Proteins

Supplementary concepts

  • Xanthomonas oryzae
  • Pyricularia oryzae