In this study, a simple in situ technique followed by hydrothermal method is used to synthesize a novel tremella-like structure of ZIF-67Co(OH)F@Co3O4/CC metal-organic framework (MOF) derived from zeolite imidazole. The in situ synthesis of metal-organic frameworks (MOFs) increases their conductivity and produces more active sites for ion insertion. Their unique, scalable design not only provides more space to accommodate volume change but also facilitates electrolyte penetration into the electrode resulting in more active materials being utilized and ion-electron transfer occurring faster during the cycle. As a result, the binder-free ZIF-67Co(OH)F@Co3O4/CC supercapacitor electrode exhibits typical pseudo-capacitance behaviour, with a specific capacitance of 442 F g-1 and excellent long-term cycling stability of 90% after 5000 cycles at 10 A g-1.
This journal is © The Royal Society of Chemistry.