Classification of Parkinson's disease by deep learning on midbrain MRI

Front Aging Neurosci. 2024 Aug 20:16:1425095. doi: 10.3389/fnagi.2024.1425095. eCollection 2024.

Abstract

Purpose: Susceptibility map weighted imaging (SMWI), based on quantitative susceptibility mapping (QSM), allows accurate nigrosome-1 (N1) evaluation and has been used to develop Parkinson's disease (PD) deep learning (DL) classification algorithms. Neuromelanin-sensitive (NMS) MRI could improve automated quantitative N1 analysis by revealing neuromelanin content. This study aimed to compare classification performance of four approaches to PD diagnosis: (1) N1 quantitative "QSM-NMS" composite marker, (2) DL model for N1 morphological abnormality using SMWI ("Heuron IPD"), (3) DL model for N1 volume using SMWI ("Heuron NI"), and (4) N1 SMWI neuroradiological evaluation.

Method: PD patients (n = 82; aged 65 ± 9 years; 68% male) and healthy-controls (n = 107; 66 ± 7 years; 48% male) underwent 3 T midbrain MRI with T2*-SWI multi-echo-GRE (for QSM and SMWI), and NMS-MRI. AUC was used to compare diagnostic performance. We tested for correlation of each imaging measure with clinical parameters (severity, duration and levodopa dosing) by Spearman-Rho or Kendall-Tao-Beta correlation.

Results: Classification performance was excellent for the QSM-NMS composite marker (AUC = 0.94), N1 SMWI abnormality (AUC = 0.92), N1 SMWI volume (AUC = 0.90), and neuroradiologist (AUC = 0.98). Reasons for misclassification were right-left asymmetry, through-plane re-slicing, pulsation artefacts, and thin N1. In the two DL models, all 18/189 (9.5%) cases misclassified by Heuron IPD were controls with normal N1 volumes. We found significant correlation of the SN QSM-NMS composite measure with levodopa dosing (rho = -0.303, p = 0.006).

Conclusion: Our data demonstrate excellent performance of a quantitative QSM-NMS marker and automated DL PD classification algorithms based on midbrain MRI, while suggesting potential further improvements. Clinical utility is supported but requires validation in earlier stage PD cohorts.

Keywords: MRI; Nigrosome-1; Parkinson’s disease; iron; machine learning; neuromelanin; substantia nigra; susceptibility.

Grants and funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This project was funded by the Singapore National Medical Research Council grant numbers: NMRC/CSASI/20nov-0008 and NMRC/CSA/INV2017.