Hydrodechlorination has emerged as a promising technique for detoxifying chlorophenols (CPs) in wastewater, but it suffers from sluggish reaction kinetics and limited durability due to the lack of effective and stable catalysts. Herein, a composite filter consisting of melamine-sponge (MS), chitin fiber (CF) and ultrafine PdAu nanoparticles (PdAu/CF-MS) has been designed for continuous hydrodechlorination of CPs by using formic acid as a H-donor and sodium formate as a promoter. Benefitting from the dense active sites, rich porosity, and synergetic interaction of Pd/Au, the PdAu/CF-MS filter exhibits excellent hydrodechlorination performance (∼ 100 % conversion) towards 4-chlorophenol (1 mM, fluxes below 6100 mL·h-1·g-1) and outstanding durability (over 500 h at 61 mL·h-1·g-1), surpassing most reported counterparts (usually deactivated within 200 h or several cycles). Moreover, other CPs can also be effectively dechlorinated by the PdAu/CF-MS filter. The catalytic system proposed herein will provide a promising candidate for the detoxification of wastewater containing toxic CPs.
Keywords: Chlorophenols; Composite filter; Device; Formic acid; Hydrodechlorination.
Copyright © 2024 Elsevier B.V. All rights reserved.