To improve the adsorption affinity and selectivity of fipronils (FPNs), including fipronil, its metabolites and analogs, a magnetic covalent organic framework (Fe3O4@COF-F) with copious fluorine affinity sites was innovatively designed as an adsorbent of magnetic solid-phase extraction (MSPE). The enhanced surface area, pore size, crystallinity of Fe3O4@COF-F and its exponential adsorption capacities (187.3-231.5 mg g-1) towards fipronils were investigated. Combining MSPE with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), an analytical method was established for the selective determination of fipronils in milk and milk powder samples. This method achieved high sensitivity (LODs: 0.004-0.075 ng g-1), satisfactory repeatability and accuracy with spiked recoveries ranging from 89.9% to 100.3% (RSDs≤5.1%). Overall, the constructed Fe3O4@COF-F displayed great potential for the selective enrichment of fipronils, which could be ascribed to fluorine‑fluorine interaction. This method proposed a feasible and promising strategy for the development of functionalized COF and broadened its application in fluorine containing hazards detection.
Keywords: Fipronil, metabolites and analogs; Fluorine‑fluorine interaction; MSPE-HPLC-MS/MS; Magnetic covalent organic framework; Milk and milk powder.
Copyright © 2024 Elsevier Ltd. All rights reserved.