Bacterial vaginosis (BV) is an imbalance of the vaginal microbiome in which there are limited lactobacilli and an overgrowth of anaerobic and fastidious bacteria such as Gardnerella. The propensity for BV recurrence is high, and therapies involving multiple treatment modalities are emerging to meet this need. However, current treatments requiring frequent therapeutic administration are challenging for patients and impact user compliance. Three-dimensional (3D)-printing offers a novel alternative to customize platforms to facilitate sustained therapeutic delivery to the vaginal tract. This study designed a novel vehicle intended for dual sustained delivery of both antibiotic and probiotic. 3D-printed compartmental scaffolds consisting of an antibiotic-containing silicone shell and a core containing probiotic Lactobacillus were developed with multiple formulations including biomaterials sodium alginate (SA), polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyethylene oxide (PEO), and kappa-carrageenan (KC). The vehicles were loaded with 50 μg of metronidazole/mg polymer and 5 × 107 CFU of L. crispatus/mg scaffold. Metronidazole-containing shells exhibited cumulative drug release of 324.2 ± 31.2 μg/mL after 14 days. Multiple polymeric formulations for the probiotic core demonstrated cumulative L. crispatus recovery of >5 × 107 CFU/mg scaffold during this timeframe. L. crispatus-loaded polymeric formulations exhibited ≥2 log CFU/mL reduction in free Gardnerella in the presence of VK2/E6E7 vaginal epithelial cells. As a first step towards the goal of facilitating patient compliance, this study demonstrates in vitro effect of a novel 3D-printed dual antibiotic and probiotic delivery platform to target BV.
Keywords: 3D-printing; Antibiotics; Bacterial vaginosis; Lactobacillus; Probiotics; Vaginal drug delivery.
Copyright © 2024 Elsevier B.V. All rights reserved.