Organophosphorus compounds are fundamental for the chemical industry due to their broad applications across multiple sectors, including pharmaceuticals, agrochemicals, and materials science. Despite their high importance, the sustainable and cost-effective synthesis of organophoshoryl derivatives remains very challenging. Here, we report the first successful regio- and stereoselective hydrophosphorylation of terminal allenamides using an affordable copper catalyst system. This reaction offers an efficient protocol for the synthesis of (E)-allylic organophosphorus derivatives from various types of P-nucleophiles, such as H-phosphonates, H-phosphinates, and secondary phosphine oxides. Key advantages of this ligand-free and atom-economic strategy include low toxicity of the Cu-based catalyst, cost effectiveness, mild reaction conditions, and experimental simplicity, making it competitive with methods that use toxic and expensive Pd-based catalysts. In an effort to comprehend this process, we conducted extensive DFT calculations on this system to uncover the mechanistic insights of this process.
Keywords: Allenes; Catalysis; Copper; DFT calculations; Hydrophosphorylation.
© 2024 The Authors. ChemSusChem published by Wiley-VCH GmbH.