Solvent-Focused Gas Chromatographic Determination of Thymol and Carvacrol Using Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction through Solidifying Floating Organic Droplets (USA-DLLME-SFO)

Molecules. 2024 Aug 20;29(16):3931. doi: 10.3390/molecules29163931.

Abstract

An ultrasound-assisted dispersive liquid-liquid microextraction by solidifying floating organic droplets, coupled to a form of temperature-programmed gas chromatography flame ionization detection, has been developed for the extraction and determination of thymol and carvacrol. This method utilizes undecanol as the extraction solvent, offering advantages such as facilitating phase transfer through solidification and enhancing solvent-focusing efficiency. The optimal gas chromatography conditions include a sample injection volume of 0.2 µL, a split ratio of 1:10, and a flow rate of 0.7 mL min-1. The extraction conditions entail an extraction solvent volume of 20 µL, a disperser solvent (acetone) volume of 500 µL, pH 7.0, 7.0% NaCl (3.5 M), a sample volume of 5.0 mL, an ultrasound duration of 10 min, and a centrifuge time of 7.5 min (800 rpm). These conditions enable the achievement of a high and reasonable linear range of 3.5 to 70. 0 μg mL-1 for both thymol and carvacrol. The detection limits are found to be 0.95 and 0.89 μg mL-1, respectively, for thymol and carvacrol. The obtained relative standard deviations, 2.7% for thymol and 2.6% for carvacrol, demonstrate acceptable precision for the purpose of quantitative analysis.

Keywords: GC-FID; USA-DLLME-SFO; carvacrol; gas chromatography; solvent focusing; thymol; undecanol.

MeSH terms

  • Chromatography, Gas / methods
  • Cymenes* / analysis
  • Cymenes* / chemistry
  • Limit of Detection
  • Liquid Phase Microextraction* / methods
  • Solvents* / chemistry
  • Thymol* / analysis
  • Thymol* / chemistry

Substances

  • Thymol
  • carvacrol
  • Cymenes
  • Solvents

Grants and funding

This research was partly funded by WELCH foundation grant number BT 0041.