MicroRNA-148a Targets DNMT1 and PPARGC1A to Regulate the Viability, Proliferation, and Milk Fat Synthesis of Ovine Mammary Epithelial Cells

Int J Mol Sci. 2024 Aug 6;25(16):8558. doi: 10.3390/ijms25168558.

Abstract

In this study, the expression profiles of miR-148a were constructed in eight different ovine tissues, including mammary gland tissue, during six different developmental periods. The effect of miR-148a on the viability, proliferation, and milk fat synthesis of ovine mammary epithelial cells (OMECs) was investigated, and the target relationship of miR-148a with two predicted target genes was verified. The expression of miR-148a exhibited obvious tissue-specific and temporal-specific patterns. miR-148a was expressed in all eight ovine tissues investigated, with the highest expression level in mammary gland tissue (p < 0.05). Additionally, miR-148a was expressed in ovine mammary gland tissue during each of the six developmental periods studied, with its highest level at peak lactation (p < 0.05). The overexpression of miR-148a increased the viability of OMECs, the number and percentage of Edu-labeled positive OMECs, and the expression levels of two cell-proliferation marker genes. miR-148a also increased the percentage of OMECs in the S phase. In contrast, transfection with an miR-148a inhibitor produced the opposite effect compared to the miR-148a mimic. These results indicate that miR-148a promotes the viability and proliferation of OMECs in Small-tailed Han sheep. The miR-148a mimic increased the triglyceride content by 37.78% (p < 0.01) and the expression levels of three milk fat synthesis marker genes in OMECs. However, the miR-148a inhibitor reduced the triglyceride level by 87.11% (p < 0.01). These results suggest that miR-148a promotes milk fat synthesis in OMECs. The dual-luciferase reporter assay showed that miR-148a reduced the luciferase activities of DNA methyltransferase 1 (DNMT1) and peroxisome proliferator-activated receptor gamma coactivator 1-A (PPARGC1A) in wild-type vectors, suggesting that they are target genes of miR-148a. The expression of miR-148a was highly negatively correlated with PPARGC1A (r = -0.789, p < 0.001) in ovine mammary gland tissue, while it had a moderate negative correlation with DNMT1 (r = -0.515, p = 0.029). This is the first study to reveal the molecular mechanisms of miR-148a underlying the viability, proliferation, and milk fat synthesis of OMECs in sheep.

Keywords: DNMT1; PPARGC1A; microRNA-148a; ovine mammary epithelial cells; proliferation; triglyceride; viability.

MeSH terms

  • Animals
  • Cell Proliferation*
  • Cell Survival*
  • DNA (Cytosine-5-)-Methyltransferase 1* / genetics
  • DNA (Cytosine-5-)-Methyltransferase 1* / metabolism
  • Epithelial Cells* / metabolism
  • Female
  • Gene Expression Regulation
  • Lactation / genetics
  • Lactation / metabolism
  • Mammary Glands, Animal* / cytology
  • Mammary Glands, Animal* / metabolism
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • Milk* / metabolism
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha / genetics
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha / metabolism
  • Sheep

Substances

  • MicroRNAs
  • DNA (Cytosine-5-)-Methyltransferase 1
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha