White striping (WS) is a myopathy characterized by the appearance of white stripes parallel to the muscle fibers in the breast of broiler chickens, composed of adipose and connective tissues. This condition causes economic losses and, although common, its etiology remains poorly understood. Hence, the objective was to identify genes and biological mechanisms involved in the early stages of WS using a paternal broiler line that grows slightly slower than commercial ones, at 35 days of age, through the RNA sequencing of the pectoralis major muscle. Thirty genes were differentially expressed between normal and WS-affected chickens, with 23 upregulated and 7 downregulated in the affected broilers. Of these, 14 genes are novel candidates for WS and are implicated in biological processes related to muscle development (CEPBD, DUSP8, METTL21EP, NELL2, and UBE3D), lipid metabolism (PDK4, DDIT4, FKBP5, DGAT2, LIPG, TDH, and RGCC), and collagen (COL4A5 and COL4A6). Genes related to changes in muscle fiber type and the processes of apoptosis, autophagy, proliferation, and differentiation are possibly involved with the initial stage of WS development. In contrast, the genes linked to lipid metabolism and collagen may have their expression altered due to the progression of the myopathy.
Keywords: RNA-Seq; gene expression; pectoral myopathy; transcriptome.