Advances in mass spectrometry (MS) have enabled high-throughput analysis of proteomes in biological systems. The state-of-the-art MS data analysis relies on database search algorithms to quantify proteins by identifying peptide-spectrum matches (PSMs), which convert mass spectra to peptide sequences. Different database search algorithms use distinct search strategies and thus may identify unique PSMs. However, no existing approaches can aggregate all user-specified database search algorithms with a guaranteed increase in the number of identified peptides and a control on the false discovery rate (FDR). To fill in this gap, we proposed a statistical framework, Aggregation of Peptide Identification Results (APIR), that is universally compatible with all database search algorithms. Notably, under an FDR threshold, APIR is guaranteed to identify at least as many, if not more, peptides as individual database search algorithms do. Evaluation of APIR on a complex proteomics standard dataset showed that APIR outpowers individual database search algorithms and empirically controls the FDR. Real data studies showed that APIR can identify disease-related proteins and post-translational modifications missed by some individual database search algorithms. The APIR framework is easily extendable to aggregating discoveries made by multiple algorithms in other high-throughput biomedical data analysis, e.g., differential gene expression analysis on RNA sequencing data. The APIR R package is available at https://github.com/yiling0210/APIR.
Keywords: Aggregation of lists; FDR control; Peptide identification; Peptide–spectrum match; Shotgun proteomics.
© The Author(s) 2024. Published by Oxford University Press and Science Press on behalf of the Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation and Genetics Society of China.