Native Proteomics by Capillary Zone Electrophoresis-Mass Spectrometry

Angew Chem Int Ed Engl. 2024 Aug 28:e202408370. doi: 10.1002/anie.202408370. Online ahead of print.

Abstract

Native proteomics measures endogenous proteoforms and protein complexes under a near physiological condition using native mass spectrometry (nMS) coupled with liquid-phase separations. Native proteomics should provide the most accurate bird's-eye view of proteome dynamics within cells, which is fundamental for understanding almost all biological processes. nMS has been widely employed to characterize well-purified protein complexes. However, there are only very few trials of utilizing nMS to measure proteoforms and protein complexes in a complex sample (i.e., a whole cell lysate). Here, we pioneer the native proteomics measurement of large proteoforms or protein complexes up to 400 kDa from a complex proteome via online coupling of native capillary zone electrophoresis (nCZE) to an ultra-high mass range (UHMR) Orbitrap mass spectrometer. The nCZE-MS technique enabled the measurement of a 115-kDa standard protein complex while consuming only about 0.1 ng of protein material. nCZE-MS analysis of an E.coli cell lysate detected 72 proteoforms or protein complexes in a mass range of 30-400 kDa in a single run while consuming only 50-ng protein material. The mass distribution of detected proteoforms or protein complexes agreed well with that from mass photometry measurement. This work represents a technical breakthrough in native proteomics for measuring complex proteomes.

Keywords: Capillary zone electrophoresis; Mass photometry; Native Mass spectrometry; Native proteomics; Protein complex.