Self-assembled peptide-based hydrogels have attracted considerable interest from the research community. Particularly, low molecular weight gelators (LMWGs) consisting of amino acids and short peptides are highly suitable for biological applications owing to their facile synthesis and scalability, as well as their biocompatibility, biodegradability, and stability in physiological conditions. However, challenges in understanding the structure-property relationship and lack of design rules hinder the development of new gelators with the required properties for several applications. Hereby, in the plethora of peptide-based gelators, this review discusses the mechanical properties of single amino acid and dipeptide-based hydrogels. A mutual analysis of these systems allows us to highlight the relationship between the gel mechanical properties and amino acid sequence, preparation methods, or N capping groups. Additionally, recent advancements in the tuning of the gels' rheological properties are reviewed. In this way, the present review aims to help bridge the knowledge gap between structure and mechanical properties, easing the selection or design of peptides with the required properties for biological applications.
Keywords: amino acid hydrogels; mechanical properties; peptide hydrogels; peptide materials; self-assembly.