Advances in Microflow Cytometry-Based Molecular Detection Methods for Improved Future MDS Cancer Diagnosis

Curr Issues Mol Biol. 2024 Jul 26;46(8):8053-8070. doi: 10.3390/cimb46080476.

Abstract

Myelodysplastic syndromes (MDS) are a rare form of early-stage blood cancer that typically leads to leukemia and other deadly complications. The typical diagnosis for MDS involves a mixture of blood tests, a bone marrow biopsy, and genetic analysis. Flow cytometry has commonly been used to analyze these types of samples, yet there still seems to be room for advancement in several areas, such as the limit of detection, turnaround time, and cost. This paper explores recent advancements in microflow cytometry technology and how it may be used to supplement conventional methods of diagnosing blood cancers, such as MDS and leukemia, through flow cytometry. Microflow cytometry, a more recent adaptation of the well-researched and conventional flow cytometry techniques, integrated with microfluidics, demonstrates significant potential in addressing many of the shortcomings flow cytometry faces when diagnosing a blood-related disease such as MDS. The benefits that this platform brings, such as portability, processing speed, and operating cost, exemplify the importance of exploring microflow cytometry as a point-of-care (POC) diagnostic device for MDS and other forms of blood cancer.

Keywords: MDS; diagnostics; flow cytometry; microflow cytometry; microfluidics.

Publication types

  • Review