Morphology Variation of Ternary PdCuSn Nanocrystalline Assemblies and Their Electrocatalytic Oxidation of Alcohols

ACS Appl Mater Interfaces. 2024 Sep 11;16(36):47368-47377. doi: 10.1021/acsami.4c04902. Epub 2024 Aug 27.

Abstract

Metal alloys not only increase the composition and spatial distribution of elements but also provide the opportunity to adjust their physicochemical properties. Recently, multimetallic alloy nanocatalysts have attracted great attention in energy applications and the chemical industry. This work presents the production of three ternary PdCuSn nanocrystalline assemblies with similar compositions via a one-step hydrothermal method. The shape variation of assembly units from nanosheets and nanowires to nanoparticles were realized by adjusting the percentage of Sn in metal precursors. Experimental data show that PdCuSn nanowire networks showed the best catalytic activity by virtue of their optimized morphological characteristics and microscopic electronic structure. With electrooxidation of methanol, ethanol, ethylene glycol, and glycerol at 30 °C, PdCuSn nanowire networks demonstrated catalytic activity of 1129, 2111, 2540, and 1445 mA mg-1, respectively. The catalytic activity for alcohol oxidation is attributed to the production of the electronic structure and morphology features that are most suitable. This is achieved by introducing the proper quantities of Cu and Sn components in the first stage of synthesis. This study would help with the construction of high-efficiency nanostructured alloy catalysts by regulating the electronic structure and morphology.

Keywords: alcohol electrooxidation; alloy; electrocatalysis; electronic structure; nanocrystalline assembly.