Reverse Encoding Distortion Correction for Clinical Head Echo-Planar Diffusion-Weighted MRI: Initial Experience

J Comput Assist Tomogr. 2024 Aug 22. doi: 10.1097/RCT.0000000000001658. Online ahead of print.

Abstract

Objective: This study aimed to evaluate the feasibility of the recently commercialized reverse encoding distortion correction (RDC) method for echo-planar imaging (EPI) diffusion-weighted imaging (DWI) by applying clinical head MRI.

Methods: This study included 50 consecutive patients who underwent head MRI, including single-shot (SS) EPI DWI and RDC-EPI DWI. For evaluation of normal structures, qualitative scores for image distortion, Dice similarity coefficient (DSC) values, distortion ratios, and mean apparent diffusion coefficient (ADC) values were assessed in the pons, temporal lobe at the skull base, and frontal lobe at the level of the lateral ventricles in 30 patients. To evaluate pathologies, qualitative scores for image distortion were assessed for 25 intracranial and 21 extracranial pathologies identified in 32 patients.

Results: Qualitative scores for image distortion, DSC values, distortion ratios, and mean ADC values of the pons and temporal lobe were significantly different between SS-EPI DWI and RDC-EPI DWI, whereas those of the frontal lobe at the level of the lateral ventricles were not significantly different between the 2 DWIs. The qualitative scores for image distortion and mean ADC values of extracranial pathologies were significantly different between the DWIs, whereas those of intracranial pathologies were not significantly different.

Conclusions: RDC-EPI DWI significantly reduced image distortion and showed higher mean ADC values of the brain parenchyma in the skull base and extracranial pathologies.