Clostridioides difficile is a gram-positive spore-forming pathogen that commonly causes diarrheal infections in the developed world. Although C. difficile is a genetically diverse species, certain ribotypes are overrepresented in human infections. It is unknown if metabolic adaptations are essential for the emergence of these epidemic ribotypes. Here, we tested carbon substrate utilization by 88 C. difficile isolates and looked for differences in growth between 22 ribotypes. By profiling clinical isolates, we assert that C. difficile is a generalist species capable of growing on a variety of carbon substrates. Further, C. difficile strains clustered by phylogenetic relationship and displayed ribotype-specific and clade-specific metabolic capabilities. Surprisingly, we observed that two emerging lineages, ribotypes 023 and 255, have divergent metabolic phenotypes. In addition, although C. difficile Clade 5 is the most evolutionary distant clade and often detected in animals, it displayed more robust growth on simple dietary sugars than Clades 1-4. Altogether, our results corroborate the generalist metabolic strategy of C. difficile and demonstrate lineage-specific metabolic capabilities. In addition, our approach can be adapted to the study of additional pathogens to ascertain their metabolic niches in the gut.
Importance: The gut pathogen Clostridioides difficile utilizes a wide range of carbon sources. Microbial communities can be rationally designed to combat C. difficile by depleting its preferred nutrients in the gut. However, C. difficile is genetically diverse with hundreds of identified ribotypes and most of its metabolic studies were performed with lab-adapted strains. Here, we profiled carbon metabolism by a myriad of C. difficile clinical isolates. While the metabolic capabilities of these isolates clustered by their genetic lineage, we observed surprising metabolic divergence between two emerging lineages. We also found that the most genetically distant clade grew robustly on simple dietary sugars, posing intriguing questions about the adaptation of C. difficile to the human gut. Altogether, our results underscore the importance of considering the metabolic diversity of pathogens in the study of their evolution and the rational design of therapeutic interventions.
Keywords: Clostridioides difficile; carbon metabolism; growth modeling; ribotyping.