Unleashing the potential of Li-O2 batteries with electronic modulation and lattice strain in pre-lithiated electrocatalysts

Chem Sci. 2024 Jul 22;15(33):13209-13217. doi: 10.1039/d4sc03242j. eCollection 2024 Aug 22.

Abstract

Efficient catalysts are indispensable for overcoming the sluggish reaction kinetics and high overpotentials inherent in Li-O2 batteries. However, the lack of precise control over catalyst structures at the atomic level and limited understanding of the underlying catalytic mechanisms pose significant challenges to advancing catalyst technology. In this study, we propose the concept of precisely controlled pre-lithiated electrocatalysts, drawing inspiration from lithium electrochemistry. Our results demonstrate that Li+ intercalation induces lattice strain in RuO2 and modulates its electronic structure. These modifications promote electron transfer between catalysts and reaction intermediates, optimizing the adsorption behavior of Li-O intermediates. As a result, Li-O2 batteries employing Li0.52RuO2 exhibit ultrahigh energy efficiency, long lifespan, high discharge capacity, and excellent rate performance. This research offers valuable insights for the design and optimization of efficient electrocatalysts at the atomic level, paving the way for further advancements in Li-O2 battery technology.