IL-32 aggravates metabolic disturbance in human nucleus pulposus cells by activating FAT4-mediated Hippo/YAP signaling

Int Immunopharmacol. 2024 Nov 15:141:112966. doi: 10.1016/j.intimp.2024.112966. Epub 2024 Aug 22.

Abstract

Extracellular matrix (ECM) metabolism disorders in the inflammatory microenvironment play a key role in the pathogenesis of intervertebral disc degeneration (IDD). Interleukin-32 (IL-32) has been reported to be involved in the progression of various inflammatory diseases; however, it remains unclear whether it participates in the matrix metabolism of nucleus pulposus (NP) cells. Therefore, this study aimed to investigate the mechanism of IL-32 on regulating the ECM metabolism in the inflammatory microenvironment. RNA-seq was used to identify aberrantly expressed genes in NP cells in the inflammatory microenvironment. Western blotting, real-time quantitative PCR, immunohistochemistry and immunofluorescence analysis were performed to measure the expression of IL-32 and metabolic markers in human NP tissues or NP cells treated with or without tumor necrosis factor-α (TNF-α). In vivo, an adeno-associated virus overexpressing IL-32 was injected into the caudal intervertebral discs of rats to assess its effect on IDD. Proteins interacting with IL-32 were identified via immunoprecipitation and mass spectrometry. Lentivirus overexpressing IL-32 or knocking down Fat atypical cadherin 4 (FAT4), yes-associated protein (YAP) inhibitor-Verteporfin (VP) were used to treat human NP cells, to explore the pathogenesis of IL-32. Hippo/YAP signaling activity was verified in human NP tissues. IL-32 expression was significantly upregulated in degenerative NP tissues, as indicated in the clinical samples. Furthermore, IL-32 was remarkably overexpressed in TNF-α-induced degenerative NP cells. IL-32 overexpression induced IDD progression in the rat model. Mechanistically, the elevation of IL-32 in the inflammatory microenvironment enhanced its interactions with FAT4 and mammalian sterile 20-like kinase1/2 (MST1/2) proteins, prompting MST1/2 phosphorylation, and activating the Hippo/YAP signaling pathway, causing matrix metabolism disorder in NP cells. Our results suggest that IL-32 mediates matrix metabolism disorders in NP cells in the inflammatory micro-environment via the FAT4/MST/YAP axis, providing a theoretical basis for the precise treatment of IDD.

Keywords: FAT4; IL-32; Interverbral disc degeneration; TNF-α; YAP.

MeSH terms

  • Adaptor Proteins, Signal Transducing / genetics
  • Adaptor Proteins, Signal Transducing / metabolism
  • Adult
  • Animals
  • Cadherins / genetics
  • Cadherins / metabolism
  • Cells, Cultured
  • Extracellular Matrix / metabolism
  • Female
  • Hippo Signaling Pathway*
  • Humans
  • Interleukins* / metabolism
  • Intervertebral Disc Degeneration* / metabolism
  • Male
  • Middle Aged
  • Nucleus Pulposus* / metabolism
  • Nucleus Pulposus* / pathology
  • Protein Serine-Threonine Kinases / metabolism
  • Rats
  • Rats, Sprague-Dawley*
  • Signal Transduction*
  • Transcription Factors / genetics
  • Transcription Factors / metabolism
  • Tumor Suppressor Proteins / genetics
  • Tumor Suppressor Proteins / metabolism
  • YAP-Signaling Proteins / metabolism

Substances

  • Adaptor Proteins, Signal Transducing
  • Cadherins
  • IL32 protein, human
  • Interleukins
  • Protein Serine-Threonine Kinases
  • Transcription Factors
  • YAP-Signaling Proteins
  • YAP1 protein, human
  • FAT4 protein, human
  • Tumor Suppressor Proteins