Loss of symmetric cell division of apical neural progenitors drives DENND5A-related developmental and epileptic encephalopathy

Nat Commun. 2024 Aug 22;15(1):7239. doi: 10.1038/s41467-024-51310-z.

Abstract

Developmental and epileptic encephalopathies (DEEs) feature altered brain development, developmental delay and seizures, with seizures exacerbating developmental delay. Here we identify a cohort with biallelic variants in DENND5A, encoding a membrane trafficking protein, and develop animal models with phenotypes like the human syndrome. We demonstrate that DENND5A interacts with Pals1/MUPP1, components of the Crumbs apical polarity complex required for symmetrical division of neural progenitor cells. Human induced pluripotent stem cells lacking DENND5A fail to undergo symmetric cell division with an inherent propensity to differentiate into neurons. These phenotypes result from misalignment of the mitotic spindle in apical neural progenitors. Cells lacking DENND5A orient away from the proliferative apical domain surrounding the ventricles, biasing daughter cells towards a more fate-committed state, ultimately shortening the period of neurogenesis. This study provides a mechanism for DENND5A-related DEE that may be generalizable to other developmental conditions and provides variant-specific clinical information for physicians and families.

MeSH terms

  • Animals
  • Cell Division*
  • Cell Polarity
  • Disease Models, Animal
  • Female
  • Guanine Nucleotide Exchange Factors / genetics
  • Guanine Nucleotide Exchange Factors / metabolism
  • Humans
  • Induced Pluripotent Stem Cells* / cytology
  • Induced Pluripotent Stem Cells* / metabolism
  • Male
  • Membrane Proteins / genetics
  • Membrane Proteins / metabolism
  • Mice
  • Neural Stem Cells* / cytology
  • Neural Stem Cells* / metabolism
  • Neurogenesis / genetics

Substances

  • Guanine Nucleotide Exchange Factors
  • Membrane Proteins
  • DENND5A protein, human