Objectives: Details about salivary gland tumor histogenesis remain unknown. Here, we established a newly generated murine salivary gland tumor model that could overexpress pleomorphic adenoma gene 1 (PLAG1) and attempted to clarify the events that occur during the early phase of salivary gland tumor histogenesis.
Methods: Salivary gland tumors were generated using murine models (Sox9IRES-CreERT2; ROSA26-PLAG1). Lineage tracing of Sox9-expressing cells was performed using Sox9IRES-CreERT2; ROSA26-tdTomato mice, which were generated by crossing Sox9CreERT2/- and ROSA26-tdTomato mice (expressing the tdTomato fluorescent protein). Organ-cultured embryonic salivary glands from the murine model were morphologically analyzed, and mRNA sequencing was conducted two days after tumor induction for gene enrichment and functional annotation analysis.
Results: Salivary gland tumors exhibited epithelial features with acinar-like structures because of gene rearrangements in the luminal cells. Structural disturbances in the duct-acinar unit of the salivary gland were observed and cancer-related pathways were enriched among the differentially upregulated genes in the early phase of tumor induction in an organ-cultured embryonic salivary gland tumor model.
Conclusions: The newly generated murine salivary gland tumor model may show that the tumorization of luminal stem/progenitor cells can result in the development of salivary gland tumors comprising only luminal cells.
Keywords: Acinar cell; Pleomorphic adenoma gene 1; Salivary gland neoplasm; Tumor model; Tumorigenesis.
Copyright © 2024 Japanese Association for Oral Biology. Published by Elsevier B.V. All rights reserved.