Engineering Shewanella oneidensis-Carbon Felt Biohybrid Electrode Decorated with Bacterial Cellulose Aerogel-Electropolymerized Anthraquinone to Boost Energy and Chemicals Production

Adv Sci (Weinh). 2024 Oct;11(39):e2407599. doi: 10.1002/advs.202407599. Epub 2024 Aug 19.

Abstract

Interfacial electron transfer between electroactive microorganisms (EAMs) and electrodes underlies a wide range of bio-electrochemical systems with diverse applications. However, the electron transfer rate at the biotic-electrode interface remains low due to high transmembrane and cell-electrode interfacial electron transfer resistance. Herein, a modular engineering strategy is adopted to construct a Shewanella oneidensis-carbon felt biohybrid electrode decorated with bacterial cellulose aerogel-electropolymerized anthraquinone to boost cell-electrode interfacial electron transfer. First, a heterologous riboflavin synthesis and secretion pathway is constructed to increase flavin-mediated transmembrane electron transfer. Second, outer membrane c-Cyts OmcF is screened and optimized via protein engineering strategy to accelerate contacted-based transmembrane electron transfer. Third, a S. oneidensis-carbon felt biohybrid electrode decorated with bacterial cellulose aerogel and electropolymerized anthraquinone is constructed to boost the interfacial electron transfer. As a result, the internal resistance decreased to 42 Ω, 480.8-fold lower than that of the wild-type (WT) S. oneidensis MR-1. The maximum power density reached 4286.6 ± 202.1 mW m-2, 72.8-fold higher than that of WT. Lastly, the engineered biohybrid electrode exhibited superior abilities for bioelectricity harvest, Cr6+ reduction, and CO2 reduction. This study showed that enhancing transmembrane and cell-electrode interfacial electron transfer is a promising way to increase the extracellular electron transfer of EAMs.

Keywords: CO2 reduction; Shewanella oneidensis; bioelectricity harvest; biohybrid electrode; interfacial electron transfer.

MeSH terms

  • Anthraquinones* / chemistry
  • Anthraquinones* / metabolism
  • Bioelectric Energy Sources*
  • Carbon / chemistry
  • Carbon / metabolism
  • Cellulose* / chemistry
  • Cellulose* / metabolism
  • Electrodes*
  • Electron Transport
  • Shewanella* / genetics
  • Shewanella* / metabolism

Substances

  • Anthraquinones
  • Cellulose
  • Carbon

Supplementary concepts

  • Shewanella oneidensis