Algal blooms threaten water quality and ecosystem stability in aquatic habitats globally, yet dynamics regulating phytoplankton community assembly, the basis of blooms, remain poorly characterized in small water bodies. Here, we employed high-throughput sequencing to analyze drivers structuring phytoplankton across a trophic gradient of 10 small water bodies over 12 consecutive months. Cyanobacteria and Chlorophyta were identified as potential seed banks priming blooms. Temporal variation in community composition was muted in nutrient-limited waters given Cyanobacteria dominance. Environmental factors and interspecific relationships jointly governed temporal phytoplankton dynamics. Phytoplankton, exhibiting greater sensitivity, responded more rapidly than bacterioplankton to environmental and biological fluctuations. This research provides a robust bench mark characterizing planktonic successional trajectories across small water bodies varying in trophic status. Results reinforce ecological mechanisms underpinning biological control strategies to mitigate algal proliferation and inform water quality management of these ubiquitous aquatic ecosystems.
Keywords: Algal bloom; Algal-bacterial relationships; Eutrophication levels of small water bodies; High-throughput sequencing.
Copyright © 2024. Published by Elsevier Inc.