Inkjet-Printed, Flexible Organic Electrochemical Transistors for High-Performance Electrocorticography Recordings

ACS Appl Mater Interfaces. 2024 Aug 15;16(41):55045-55055. doi: 10.1021/acsami.4c07359. Online ahead of print.

Abstract

Organic electrochemical transistors (OECTs) have emerged as powerful tools for biosignal amplification, including electrocorticography (ECoG). However, their widespread application has been limited by the complexities associated with existing fabrication techniques, restricting accessibility and scalability. Here, we introduce a novel all-planar, all-printed high-performance OECT device that significantly enhances the accuracy and sensitivity of ECoG recordings. Achieved through an innovative three-step drop-on-demand inkjet printing process on flexible substrates, our device offers a rapid response time of 0.5 ms, a compact channel area of 1950 μm2, and is characterized by a transconductance of 11 mS. This process not only simplifies integration but also reduces costs. Our optimized in-plane gate voltage control facilitates operation at peak transconductance, which elevates the signal-to-noise ratio (SNR) by up to 133%. In vivo evaluations in a rat model of seizure demonstrate the device's performance in recording distinct electrographic phases, surpassing the capabilities of PEDOT:PSS-coated gold-based ultralow impedance passive electrodes, achieving a high SNR of 48 db. Our results underscore the potential of Inkjet-printed OECTs in advancing the accessibility and accuracy of diagnostic tools that could enhance patient care by facilitating timely detection of neurological conditions.

Keywords: Organic Electrochemical Transistor (OECT); amplification; electrocorticography; neural interface; seizure.